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Abstract

We describe a method for simulating the reaction dynamics of a molecular ion embedded in a cluster of polarizable
solvent molecules. Potential energy surfaces for ground and excited states are calculated from an effective Hamiltonian that
takes into account the strong perturbation of the solute electronic structure by the solvent. The parameters of the model
Hamiltonian are obtained from a combination of ab initio calculations and spectroscopic data; intermolecular electrostatic
and polarization interactions are treated by the distributed multipole analysis of Stone and co-workers, while short range
interactions are modeled with empirical pair potentials. Analytical expressions for the derivatives of the effective
Hamiltonian allow for efficient computation of forces and nonadiabatic couplings. The intramolecular degrees of freedom of
the solvent molecules are held fixed during the simulations using the method of constraints, and electronic transitions are
treated using Tully’s surface hopping algorithm. The method is applied to the photodissociation and recombination of
yŽ .I CO . Electronic relaxation in this system is found to occur on multiple time scales, ranging from 2 ps to many tens of2 2 n

ps. The relationship of these results with the experimental measurements of Lineberger and co-workers is discussed. q 1998
Elsevier Science B.V. All rights reserved.

1. Introduction

The photodissociation and recombination of di-
w xhalide ions in gas-phase clusters 1–11 and in liquid

w xsolution 12–15 involves dynamics that take place
on multiple potential energy surfaces over a wide
range of solute bond lengths, solvent configurations,
and time scales. Such systems present serious chal-
lenges to molecular dynamics simulation. Since pho-
todissociation occurs on an excited electronic state,

1 Current address: Department of Chemistry, University of
California, Berkeley, CA 94720, USA.

an accurate treatment of the solute molecule’s elec-
tronic structure is required, and, since recombination
involves transitions to other states, a method for
handling electronically nonadiabatic effects is
needed. Ionic solutes are more difficult to treat than
neutral ones because their electronic structure is
strongly perturbed by the coulombic interactions with
the permanent and induced moments on the solvent
molecules, giving rise to a flow of charge within the
solute that is intimately coupled to the dynamics of
the solvent. Furthermore, this charge flow is state-
dependent: in the ground state the excess charge
localizes on the more heavily solvated atom as the
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molecule dissociates, but in certain excited states the
w xcharge flows in the opposite direction 16,17 . Be-

cause of these complications, theoretical treatments
have until recently dealt with limited aspects of the
problem such as vibrational relaxation in the elec-

w xtronic ground state 17–20 .
In the past two years, the development of conve-

nient and accurate model Hamiltonians for the inter-
acting solute-solvent system has made simulations of

w xthe full dynamics possible. Batista and Coker 21
have used a semiempirical Diatomics-in-Ionic-Sys-
tems Hamiltonian to simulate the photodissociation
and recombination of Iy in Ar clusters, and have2

achieved good agreement with the experimental
w xproduct distributions 7 . Our own group has devel-

oped a model Hamiltonian based on ab initio elec-
tronic structure calculations and the distributed mul-

w xtipole analysis of Stone and co-workers 22 , with
which we have successfully reproduced the observed

y w xproduct distributions in I clustered with Ar 23 and2
w xCO 24 , and the time-resolved photoelectron spec-2

y w xtra of I Ar clusters 25 . The present paper is the2 n

second of two devoted to describing this model in
w xfull detail. In the first paper 26 we derived an

effective Hamiltonian for the electronic structure of a
charged solute embedded in a cluster of polarizable
solvent molecules. Here we show how the parame-
ters in this Hamiltonian are determined from a com-
bination of ab initio and experimental data, and how
the Hamiltonian is used to compute cluster structures

yŽ .and dynamics. We use I CO to illustrate the2 2 n

procedure since this is the most extensively studied
experimental system in this class, but the model has
also been applied to several other diatomic solute-

w xsolvent systems 27 . The only fundamental restric-
tion is that charge transfer or chemical reaction
between solute and solvent not be important in the
excitation energy range of interest.

The paper is constructed as follows: Section 2
describes the electronic structure of Iy in the gas2

phase, emphasizing aspects of the electronic struc-
ture that are important for modeling the solute-solvent
interactions. Section 3 describes the potential model
for Iy embedded in a CO cluster. The main goal2 2

here is to incorporate experimentally known features
of the potentials with an accurate treatment of the
electrostatic interactions, which dominate because of
the excess solute charge. The ab initio wave func-

tions of the solute, parameterized in terms of dis-
tributed multipole operators, provide the basis for
determining the electrostatic interactions between the
solute and solvent. The solvent is treated in a more
empirical fashion, using distributed charges, point
polarizabilities, and pair potentials. Section 4 shows
how structural and dynamical properties are calcu-
lated from the effective Hamiltonian. Methods for
computing minimum energy cluster structures, adia-
batic dynamics on single potential energy surfaces,
and nonadiabatic transitions among potential sur-
faces are described. A central advantage of our
model is that derivatives of the effective Hamilto-
nian, and thereby forces and nonadiabatic transition
probabilities, are obtained in a convenient analytic
form; the formulas that we use are given at the end
of Section 4. In Section 5 the model is illustrated
with simulations of photodissociation and recom-

yŽ .bination in I CO clusters. We have presented2 2 n

some of these results in an earlier communication
w x24 ; in the present paper we discuss in more detail
the time scales for electronic relaxation and their
relationship to the time-resolved experiments of

w xLineberger and co-workers 2,4,5 .

2. Electronic structure of II
2

w xIn an earlier paper 28 we have reported multiref-
Ž .erence configuration interaction MRCI calculations

of the ground and excited states of Iy and ICly. We2

summarize here those aspects of the electronic struc-
ture that are important for understanding the interac-
tion between the dihalde anion and a solvent.

The dihalide anions, one electron short of a com-
plete valence shell, behave like one-electron
molecules, with the position of the hole determining
the symmetry of the electronic state. Considering the
valence s electrons as occupying a closed subshell,
there are 11 valence p electrons that must be placed
into 6 valence p orbitals—s , p , p ) , and s )—as
shown in the orbital correlation diagram of Fig. 1. In
the absence of spin-orbit splitting, there are four
distinct energy levels arising from a total of 12
molecular states, 2 2

S and 2 2
P, which all dissoci-

ate to give a 2P halogen atom and a 1S halide anion.
Ž .We refer to these as the case a states. The potential

y Ž .curves for these states in I , shown in Fig. 2 a ,2



( )J. Faeder et al.rChemical Physics 239 1998 525–547 527

Fig. 1. Orbital correlation diagram for Xy without spin-orbit2
w Ž .xcoupling Hund’s case a . There are six doublet states corre-

sponding to the electron hole occupying one of the six valence
orbitals. The symmetry of the total wave function is simply that of
the orbital containing the hole.

illustrate several important points. First, there is a
strong attraction in the S bonding state, while the
remaining curves are repulsive or only slightly at-
tractive. Second, the S

) antibonding state lies above
the P

) antibonding state at the equilibrium bond
length, R , which strongly influences the charactere

of the spin-orbit coupled excited states, as discussed
below. Finally, there is a crossing between the S

)

and P
) states at intermediate bond lengths, which is

due to the interaction between the positive quadrupole
moment of the neutral atom and the negative charge
of the ion. This interaction is attractive for the S

states, and repulsive for the P states.
In addition to being useful for understanding the

Ž .electronic structure of these anions, the case a
states are convenient for calculations because most
ab initio programs do not include spin-orbit cou-

Ž .pling. In our approach the case a states are deter-
w xmined using the ab initio program MOLPRO 29 . The

matrix elements of a semiempirical spin-orbit opera-
Žtor parametrized by atomic spin-orbit coupling con-
.stants are evaluated in these basis states, and the

resulting Hamiltonian is diagonalized to give the
fully coupled electronic eigenstates of the isolated
molecule. Spin-orbit coupling splits the four Hund’s

Ž .case a levels into six and lifts the degeneracy of the
atomic 2 P and 2 P states, as illustrated in Fig.3r2 1r2
Ž .2 b . An orbital correlation diagram based on the

Ž .Hund’s case c atomic states is shown in Fig. 3.
Ž .Although the Hund’s case a labels are still used to

describe the curves, the only good quantum numbers

y Ž . Ž . Ž . Ž .Fig. 2. Ab initio potential curves for I . a Without spin-orbit. b Including spin-orbit coupling. The Hund’s case a labels used in b are2
w xapproximately valid near R , but become inappropriate as the bond dissociates. Parameters for the neutral curves were taken from Ref. 83 .e
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Fig. 3. Orbital correlation diagram for Xy including spin-orbit2
w Ž .xcoupling Hund’s case c . There are six doublet states corre-

sponding to the electron hole occupying one of the six valence
orbitals. As the bond coupling increases, the orbitals indicated by
the arrow cross because the upper and lower orbitals correlate to
bonding and antibonding orbitals respectively.

are V , the projection of the total electronic angular
momentum onto the internuclear axis, and the g and
u parity labels.

Ž .At long bond lengths, the case c coupling pic-
ture completely describes the states of the system. At
shorter distances the bonding interaction is compara-
ble to the spin-orbit coupling, so a hybrid of the case
Ž . Ž .a and case c pictures governs the states. The case
Ž . Ž .c states are a mixture of the case a states with the

Ž .dominant case a state determining the approximate
Ž .symmetry label. The dominant case a state com-

w xprises at least 90% of the wave function at R 28 ,e
Ž .so the case a labels provide a good description near

the equilibrium bond distance. This mixing at R ise

important experimentally, however, because the tran-
sitions that have been used to study these systems
Ž . )see Fig. 4 rely on mixing of the S character into
one of the P states for intensity. The perpendicular
S™P transition is too weak on its own to be used
in the experiments, while the parallel S™S

) transi-
tion moment is always large. The mixing is also
important because the bonding and antibonding char-
acter of each state determines the direction of excess
charge flow. The importance of the antibonding states
for both the transition moments and the charge flow
demonstrates the need to include all four of the

Ž .low-lying case a electronic states in the solute
Hamiltonian.

Our electronic structure calculations yield a
ground state well depth that is about 10% smaller
than the experimentally determined value of 1.01 eV

w x30 , presumably because of the limitations of our
one-electron basis sets. We have employed a simple
scaling procedure to adjust the well to match the
experimental values. The adjustment is done on the

Ž .case a curves to avoid extra transformations be-
Ž . Ž .tween the case a and case c states. In the region

Ž .near R , there is little mixing of the ground case ae
w xS state with the excited states 28 . Therefore, scal-

ing the S state has little effect on the energies of the
Ž .excited states. All of the case a states are shifted by

the same amount in order to preserve the energy
spacings between the states, which agree well with
the experiments. The amount of the shift is given by

cy1 RyRc
D R s 1y tanhŽ . ž / ž /ž /2 wc

= S SV R yV ` , 1Ž . Ž . Ž .
where the parameters c, R , and w are chosen toc c

give the correct well depth for the ground state

Fig. 4. Scaled potential curves for Iy. The ground state has been2

scaled to match the experimental well depth, while the excited
states have been shifted by the same amount to preserve the
energy spacings. The transition used to excite the solute in the
photodissociation experiments is indicated by the arrow.
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˚Ž .without shifting R significantly -0.01 A . Thee

scaled potential curves are shown in Fig. 4. The
excited state curves are all unbound or very weakly
bound in comparison with the ground state, as one
would expect from simple molecular orbital consid-
erations. Through comparison with the known bond
dissociation energies of Xeq, Chen and Wentworth2
w x31,32 have suggested that all of the excited states
of Iy are slightly bound. Given the limits of the2

current calculations, we do not expect these wells to
be accurately reproduced, and there are differences
between our calculated values and the semiempirical
fits.

3. Model Hamiltonian for dihalide anions in clus-
ters

The model Hamiltonian is constructed under the
assumption that electrostatic and polarization terms
will dominate the mixing of different solute states.
The remaining terms, arising from dispersion and
repulsion, provide the shape and energetics of the
short-range interaction potentials:

ˆeff ˆC intra ˆ lr ˆsrh sh qE qh qh . 2Ž .
ˆCHere h is the Hamiltonian of the isolated solute and

E intra is the total intramolecular energy of the iso-
lated solvent molecules, which is just the sum of

ˆlrtheir internal energies. h contains the long-range
ˆsrelectrostatic and polarization terms, while h repre-

sents the residual short-range interactions. In general
the short-range terms depend on the electronic state
of the solute, but we expect that if the electrostatic
terms are large, as they are in ionic systems, the state
dependence will be relatively small—too small to
extract from the relatively low resolution spectro-
scopic data available for ionic and open-shelled sys-
tems. We have therefore used empirical state-inde-
pendent parameters to describe the short-range inter-
actions in most of our applications.

3.1. Long-range interactions

The electrostatic potential arising from a molecu-
lar charge distribution may be expanded in a multi-
pole series, the convergence of which may be greatly

Ž .accelerated by using distributed multipoles DM
w xinstead of a single-center expansion 22,33,34 . In

particular, the distributed expansion converges for
points that lie outside of the charge distribution but
inside the molecular radius, where the single-center
expansion breaks down. In clusters and condensed
phases molecules pack closely, so that accurate rep-
resentation of the electrostatic interactions in this
regime is essential. In the DM expansion, several
sites, usually atoms and bond centers, are chosen
within each molecule, and the multipoles for the
entire molecule are partitioned into contributions
from each of these sites. At each site the moments
are expanded to a given order in real spherical tensor

w xmoments 35 .
We treat the solvent molecules classically, so

their distributed multipole moments are simply clas-
sical variables. We have found that distributed
charges and single site dipole polarizabilities are
adequate for creating realistic interaction potentials.

w xFive charges, taken from Murthy et al. 36 , are used
for the CO model. These charges reproduce the2

quadrupole moment of CO , and in conjunction with2

Lennard-Jones sites on the atoms give interaction
potentials that reproduce the experimentally ob-

Ž .served structures for the dimer and trimer of CO2 n
w xclusters 37 . The polarizability of CO has little2

effect on the solvent-solvent interactions but has a
strong interaction with the solute anion. The model
includes a single site on CO with different polariz-2

abilities parallel and perpendicular to the bond. The
values for all of the parameters used to describe the
solvent charge distribution, the solvent-solvent inter-
actions, and the short range solute-solvent interac-
tions described in the next section are shown in
Table 1.

In contrast to the solvent, the solute charge distri-
bution is treated quantum mechanically. Electronic
structure calculations provide wave functions for the
ground and valence excited states of the isolated
solute. From these wave functions we construct the
solute charge density matrix, which allows us to
determine how the electronic structure of the solute
is perturbed by interaction with the solvent. In the
representation defined by the isolated solute eigen-
states, the diagonal elements of the density matrix
represent the charge distribution in particular states
while the off-diagonal matrix elements represent
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Table 1
y Ž .Potential parameters I CO2 2 n

CO geometry2

˚Ž .R A 1.16Cy O

a ˚Ž . Ž .CO charge distribution charge au distance from C A2

q s q 0.1216 1.5231 5

q s q y0.6418 1.0662 4

q 1.0404 0.0003

bCO polarizability2
3˚Ž .a A 4.487z z

3˚Ž .a s a A 2.127x x y y

cInduction damping
˚Ž .R A 2.75damp

˚Ž .w A 0.529damp

˚Ž . Ž .LJ parameters s A e meV
aC–C 2.824 2.256
aO–O 3.026 6.477
aC–O 2.925 3.823

C–I 3.805 16.33
O–I 3.200 12.56

a w x b w x c Ž .Ref. 36 . Ref. 82 . See Eq. 6 .

transition charge densities, which account for the
mixing of the isolated solute states brought about by
interaction with the solvent. Transition densities al-
low the solute charge distribution to polarize in
response to the external fields that act on it, and thus
enable the model to describe solvent-induced charge
localization in terms of delocalized molecular eigen-
states.

Just as a classical density is expanded in terms of
distributed multipole moments, the quantum density
matrix is expanded in terms of distributed multipole

w xoperators 22 . The matrix elements of these opera-
tors are determined for each geometry at which the

Žab initio wave functions were calculated a total of
y.50 internuclear distances for I . When the bonding2

interactions are strong, the multipoles are distributed
over four sites—one on each nucleus and two at
equidistant points along the bond axis. At longer
bond lengths, the bond sites are gradually damped
using a hyperbolic tangent switching function to
reflect the localization of the wave function onto the
nuclei. Multipoles through quadrupole must be in-

cluded at a minimum because the open-shell halogen
atoms have substantial quadrupole moments that in-
teract with the solvent. The quadrupole moment for
the valence p orbital on I from the ab initio calcula-

˚Ž .tion is 17.4 atomic units 2.34 Debye A .
w xThe absorption spectra discussed in Ref. 28 pro-

vide one test of the accuracy of the calculated charge
density matrix. We found good agreement with ex-
periment for the magnitudes of the parallel transition
moments from the ground electronic state at equilib-
rium separation, but there is some evidence that the
calculated perpendicular transition moments near Re

are too small. Aside from these measurements, the
only way to determine if the charge distributions of
the dissociating molecule are correct is by compari-
son of simulations to photofragmentation and pump-
probe studies of photodissociation in clusters. The
overall agreement is quite good, although these mea-
surements are sensitive to many factors other than
the distribution of solute charge, so it is difficult
draw conclusions about particular components of the
model.

The potential energy associated with the long-
range interactions can be partitioned into electro-

ˆlr ˆes ˆ polstatic and polarization terms, h sh qh . The
electrostatic energy arises from the interaction be-
tween permanent multipoles on solvent and solute:

1es A A B B A A C Ci i j j i i j jĥ s Q T Q q Q T q̂Ý Ýt t u u t t u u2
A , B , t ,u A ,C , t ,ui j i j

1 ˆ ˆ' Qqq PTP Qqq , 3Ž .Ž . Ž .2

where the sum runs over the sites and multipole
orders on each pair of molecules in the system. The
letter ‘‘C’’ is reserved for the solute while ‘‘A’’ and
‘‘B’’ run over solvent molecules. The elements of
the interaction tensor T depend on the intermolecular
distances and orientations; T A i Bj gives the coordinatet u

dependence of the interaction between the multipole
of order t on site i of molecule A and the multipole
of order u on site j of molecule B. Although the
tensor elements are rather complicated functions for
all but the lowest order of multipoles, explicit ex-

w xpressions for them have been tabulated 22,35,38 .
Note that T A i A j and T CiCj are always zero because it
is assumed that interactions within a single molecule
are accounted for in the intramolecular energy. In the
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Ž .second line of Eq. 3 we have introduced a conve-
nient matrix notation; the rows and column indices
of the matrix T include all the expansion sites and
multipole components on all molecules in the sys-
tem.

The polarization energy of the solute-solvent sys-
tem contains the interactions between permanent and
induced moments as well as the mutual interaction
between induced moments. It can be expressed as
w x26

1polˆ ˆ ˆh sy Qqq PTPxPTP Qqq , 4Ž .Ž . Ž .2

where x is a generalized electric susceptibility ma-
trix, which in the linear response approximation is
given by

y1y1w xx'y Tqa 5Ž .
in terms of the polarizabilities a of the solvent
molecules. The polarization energy is not pairwise
additive because the induced multipoles interact with
each other; construction of the susceptibility matrix
x is equivalent to solving the linear response equa-
tions relating permanent and induced moments. This
calculation is usually the most computationally de-
manding step in constructing the effective Hamilto-
nian. When only a single source term is present, it
may be efficient to evaluate the induced moments
using an iterative procedure. Because the source term

ˆpolin h is an operator, however, a different set of
induced moments must be computed for each pair of
basis states. In clusters, where the number of polariz-
able sites is relatively small, it is therefore more
efficient to compute x directly by inverting the

w y1 xmatrix Tqa .
A well-known problem in many-body polarization

models is the singularity that arises when polarizable
w xsites are too closely spaced 39 . One solution to this

problem is to damp the polarization interactions at
short bond lengths using a simple radial function,

RyRdamp1
g R s tanh q1 , 6Ž . Ž .2 ž /wdamp

which is applied to each interaction tensor element
w xconnecting each pair of polarizable sites 22 . The

parameters R and w are chosen to have adamp damp

small effect near equilibrium separations but to turn
on damping rapidly when the charge clouds are

penetrated. Values of these parameters are shown in
Table 1.

3.2. Short-range interactions

The basic method of handling the short-range
interactions places isotropic, pairwise Lennard-Jones
Ž .LJ sites on all the nuclei with parameters fit to
match available experimental data,

s 12 s 6
X i j i jsrĤ s 4e y , 7Ž .Ý i j 12 6ž /R Ri j i jij

where the indices i and j run over all the atomic
sites in the system, and the sum is restricted to
include only pairs where the sites reside on different
molecules. Note that since the charge on each solute
atom depends on the solute wave function, having
different short-range interactions for the ionic and
neutral atoms requires introducing a state-dependent
interaction. It is not obvious, however, that a set of
LJ parameters that gives a correct overall potential
for the Iy PPP CO interaction will also give the2

correct interaction for I PPP CO , because one would2

expect the presence of the extra electron to change
the effective size and shape of the iodide. Our proce-
dure is to start with the simplest empirical descrip-

Ž .tion of the potentials, as given by Eq. 7 , and
modify these as is warranted by the available data.
We have found that it is not necessary to change the
LJ parameters going from Iy to I in order to fit the
experimental interaction potentials. In the case of the
I PPP Ar potentials, however, we found that an
anisotropic and state-dependent dispersion term had
to be added to reproduce the experimental potential

w xcurves 23 .
Little is known about the interactions of the di-

atomic solute with the solvent molecules. An esti-
mate of the binding energy has been obtained from

w xphotofragmentation studies 3,7 , but no spectro-
scopic data is yet available. Therefore, all of the
solute-solvent potentials are fit to the better-known
interactions between the solute fragments and the
solvent molecules. Because we include the electro-
static effects at a high level, we assume only that the
short-range solute-solvent interactions are not dra-
matically altered by the chemical bonding within the



( )J. Faeder et al.rChemical Physics 239 1998 525–547532

2 Ž .Fig. 5. Interaction of P halogen atom with CO . a Shows that2

the state with a hole in the P orbital is lower in energy because of
the resulting positive quadrupole moment, which interacts favor-
ably with the quadrupole on CO . In the S orientation, the hole2

Ž .interaction with the CO quadrupole is slightly repulsive. b2

Shows the resulting state ordering when spin-orbit coupling is
included. The ordering of the lower two states is reversed for the
linear geometry.

solute. A combination of scattering data and photo-
w xelectron spectroscopy 40,41 has been used to deter-

mine potentials for neutral and negatively-charged
halogen atoms interacting with various solvent
molecules. The bond lengths from these fits are
accurate to a few percent, while the binding energies
are known to about 5%.

All of the terms used to fit these short-range
interactions are pairwise-additive. There is little data
for these systems sufficient to resolve the small
many-body dispersion terms. The only data on
many-body interactions of direct relevance to the
model is the study of IyAr potentials made byn

w xYourshaw et al. 42 . They found that many-body
induction was the major contributor to the many-body
interaction—about 15% of the total interaction en-
ergy—while many-body exchange and dispersion
terms had an effect of at most a few percent. Since
our model does treat the many-body induction accu-
rately, inclusion of short-ranged nonadditive effects
does not seem necessary.

The Iy PPP CO and I PPP CO interaction poten-2 2

tials for the T-shaped configuration are known to
w xgood accuracy from ZEKE measurements 40 . The

anion is T-shaped because of the strong interaction
of the ion with the large CO quadrupole. The2

electronegative oxygen atoms are repelled strongly
by the anion, even forcing CO to bend slightly2

away from the ion, which has been observed experi-
w x yŽ .mentally 43 . In I CO the bending is about 52

degrees. For simplicity we have chosen to keep CO2

yŽ .rigid in our simulations; simulations of I CO2 2 n

dynamics on the electronic ground state using a
flexible model for CO found that the bending vibra-2

w xtions had little effect on the adiabatic dynamics 44 .
Modeling has indicated that the bending arises mostly
from electrostatic effects rather than charge transfer
w x43 . One might expect that for clusters with more
than a few CO molecules, the extent of the bending2

will be reduced by the solvent-solvent interactions,
which favor linear CO .2

The ZEKE experiments show that the neutral
I PPP CO cluster has at least a local minimum in the2

T-shape geometry. The electrostatic interaction be-
tween the halogen atom and CO quadrupoles is2

proportional to 1rR5 and is the leading term in the
neutral potential. This term contains the correct ani-
sotropy to describe the splitting of the three observed

Ž2 .Fig. 6. Potential curves for I P interacting with CO in the2

linear and T-shaped geometries. The dashed and solid lines show
a comparison between the model and experimental fits. The
interaction for the linear geometry of the anion is strongly repul-
sive, but there are significant attractive wells for the linear config-
urations of the neutral states.
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neutral states. The interactions between the
quadrupole on the neutral halogen atom and the
quadrupole on CO are illustrated in Fig. 5. The2

positive halogen quadrupole is parallel to the nega-
tive CO quadrupole in the Vs3r2 state, resulting2

in a more attractive interaction than in the Vs1r2
state, where the quadrupole-quadrupole interaction is
unfavorable. The situation is reversed in the linear
geometry.

We have obtained good fits using the four LJ
parameters associated with the pairwise atomic inter-
actions in addition to the electrostatic Hamiltonian.
The fits to the Iy PPP CO and I PPP CO curves are2 2

shown in Fig. 6 and the LJ parameters are given in
Table 1.

4. Methods for computing structure and dynamics

The preceding section presented an effective
Hamiltonian for the electronic states of a solute
embedded in a molecular cluster or solvent. The
eigenvalues of this Hamiltonian are functions of the
nuclear positions, and define the Born-Oppenheimer
potential surfaces that govern the nuclear motion.
For photodissociation we want to model the dynam-
ics that occur when the solute in its ground elec-
tronic state absorbs a photon and is excited to a
potential surface on which the solute nuclei are
repelled. Because there are many nuclear degrees of
freedom in the cluster, the nuclear dynamics on each
potential surface are treated classically, by solving
Newton’s equations of motion for the nuclei under
the influence of the Born-Oppenheimer potential sur-
face.

The initial configurations of the cluster prior to
photoexcitation are determined from molecular dy-

Ž .namics MD simulations on the ground state poten-
tial surface. Trajectories are initiated from an arbi-
trary configuration at a fixed total energy, and are
followed until the distribution of energy throughout
the cluster reaches equilibrium. After equilibration,
cluster configurations are periodically sampled to
construct an ensemble of starting points for photodis-
sociation trajectories. The ensemble is meant to sam-
ple the range of initial configurations sampled by an
experiment performed under specific conditions, most
often at fixed temperature.

Following photoexcitation, the solute nuclei fly
apart on the repulsive excited state surface. As the
solute nears dissociation, its electronic states bunch
together, leading to a breakdown of the Born-Op-
penheimer picture. The electrons of the solute no
longer respond instantly to the motions of the nuclei,
so that the true electronic wave function of the solute
becomes a mixture of the adiabatic states. The simu-
lations reported here were performed using a sur-

Ž .face-hopping SH approach to describe the nonadia-
batic dynamics. The nuclei evolve on a single adia-
batic state at a time, but this state can change when
nonadiabatic coupling with other states occurs. Sur-
face hopping is determined stochastically according
to an algorithm in which the probability of occupy-
ing each adiabatic state is given by the square of its
amplitude in the total nonadiabatic electronic wave
function. Because this is an all-or-nothing approach
—the trajectory must always be on one surface or
another—a large number of trajectories must be
computed to determine the correct branching proba-
bilities into each of the coupled states.

4.1. Adiabatic dynamics

It is common practice in MD simulations to con-
strain those intramolecular degrees of freedom that
are not considered vital to the properties of interest,
so that a larger time step can then be used in
integrating the equations of motion. The simulations
presented here have treated the solvent molecules as
rigid, and the good agreement of the results with
experiment suggest that this is a reasonable approxi-
mation. In the future it will be important to study the
effects of relaxing the internal molecular constraints
to determine what role intramolecular vibrations play
in dissipating excess vibrational and electronic en-
ergy due to photoexcitation.

Our procedure for constraining the intramolecular
degrees of freedom is based upon the work of Cic-

w xcotti, Ryckaert and coworkers 45–48 . The molecu-
lar geometry is specified by the Cartesian coordi-
nates of a core group of atoms, and holonomic
constraints are applied to selected bond distances and
dihedral angles. Constraining all of the core atom
distances fixes the molecule as rigid; semirigid
molecules can be treated by replacing individual
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constraints with internal potentials. The most expen-
sive part of most molecular models is the evaluation

Žof energies and forces particularly when there are
.non-additive contributions, as there are in our model ,

and overhead associated with integrating the addi-
tional equations of motion or applying constraints is
usually small. What is most important is picking an
integration method that yields acceptable accuracy
for a maximal step size, so that the number of force

w xevaluations can be limited. The Verlet algorithm 49
w xand its descendant the velocity Verlet algorithm 50 ,

which we have used, provide an optimal balance
w xbetween efficiency and accuracy 51 .

The method of constraints specifies three site
categories: primary atom, secondary atom, and force
center. The primary atoms define each subunit, and
their coordinates are used to integrate the equations
of motion. All forces and torques in the system must
be converted to forces on the primary atoms. Our
model for rigid CO has the two primary oxygen2

atoms, a secondary carbon atom at the bond mid-
point, and a bond constraint fixing the O–O distance

Ž .at r Fig. 7 . Five additional force centers forOy O

the point charges and one additional force center for
the polarizability along with the pairwise Lennard-
Jones interactions associated with the atomic sites
complete the potential model described in Section 3.
Because the polarizability of CO is anisotropic, the2

polarizable site exerts a torque on the molecule,
which is resolved into forces on the primary atoms
using the derivatives of the molecular axes with
respect to the primary atom positions. Methods for
resolving these torques and for determining the forces
due to multipole sites of arbitrary order are discussed

w xin Section 4.3.3 and in Ref. 27 .
The model for the diatomic solute consists of two

primary atoms and four force centers for the multi-
poles located on the nuclei and at equidistant points

Fig. 7. Rigid CO model using method of constraints.2

along the bond. The internal potential of the molecule
is built into the effective Hamiltonian described in
Section 3. As in the CO model, the primary atomic2

sites are also associated with pairwise Lennard-Jones
potentials that describe the short-range interactions
with the solvent atoms.

In characterizing the behavior of clusters at equi-
librium, it is useful to identify local minima of the

w xpotential surface 52 since structural features of
these minima often influence the dynamics both
before and after photoexcitation. We find minimum
energy structures using standard optimization tech-

w xniques 53 . Two features must be added to these
algorithms to ensure that the constraints are obeyed
while retaining the efficiency of the method. First,
the constraints must be projected out of the gradient
or force vector, so that infinitesimal displacements
along the gradient do not violate the constraints.
Second, one must devise a method for applying the
constraints to configurations where the constraints
are violated by a small amount, which arise because
the constraints are in general not linear with respect
to the displacements. Our implementation is based
on the projection operator method described by Lu,

w xZhao, and Truhlar 54 . These workers combined
projected constraints with quasi-Newton optimiza-
tion algorithms, while we have used both quasi-New-
ton and conjugate gradient techniques to find min-
ima. Conjugate gradient methods are advantageous
when the derivatives are expensive to compute; how-
ever, for our model Hamiltonian, evaluation of the
forces analytically is only about three times as ex-
pensive as evaluation of the energy alone, and we

w xhave found that the quasi-Newton 53 , or variable
metric methods give substantially better perfor-
mance. Both methods are faster than the simulated
annealing techniques using Monte Carlo trajectories

w xpreviously used by our group 3,17 and molecular
w xdynamics quenching 55,56 , which we have also

tested.

4.2. Nonadiabatic dynamics

Photodissociation in molecular clusters involves
dynamics on multiple potential energy surfaces. A
complete description of such a process would require
quantum-mechanical treatment of both the nuclear
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and electronic degrees of freedom, which is not
feasible for systems with more than a few atoms.

Ž .Mixed quantum-classical MQC methods, in which
the majority of degrees of freedom are described by
classical mechanics, offer an attractive alternative
since they scale linearly with number of degrees of
freedom. Central to all MQC methods is the concept
of a path through configuration space followed by
the classical degrees of freedom under the influence
of forces determined from both the classical and
quantum systems. The time evolution of the quantum
wave function is determined by integrating the time-
dependent Schrodinger equation along the classical¨
path. The Hamiltonian for the system is expressed as
an operator on the quantized electronic coordinates r
that depends parametrically on the classical nuclear

( )coordinates R t :

ˆ ˆ ˆHsH r;R qT R , 8Ž . Ž . Ž .0

ˆ Ž .where H r;R is the Hamiltonian for fixed nuclei0
ˆŽ .and T R is the nuclear kinetic energy operator. The

wave function for the quantum subsystem is ex-
panded in a basis of orthonormal functions that also
depend parametrically upon the nuclear coordinates:

C r,R,t s c t c r;R . 9Ž . Ž . Ž . Ž .Ý i i
i

Putting this wave function into the time-dependent
Schrodinger equation yields an equation of motion¨

Ž .for the quantum amplitudes c t . It is convenient toi
ˆchoose the eigenstates of H as a basis since this0

representation can be uniquely defined for a general
system. In this ‘‘adiabatic’’ representation the quan-
tum amplitudes obey

˙i"c t sc E y i" c R t Pd , 10Ž . Ž . Ž .˙ Ýi i i j i j
j

˙ Ž .where E is the energy of adiabatic state i, R ti

contains the nuclear velocities, and d is the nonadi-i j

abatic coupling vector,

² < < :d s c = c , 11Ž .i j i R j

Ž .which enters Eq. 10 by application of the chain rule

˙² < < :c ErE t c sR t Pd . 12Ž . Ž .i j i j

Methods for evaluating the nonadiabatic couplings
given by the d are discussed in Section 4.3. Thei j

matrix elements of the nuclear kinetic energy opera-
ˆŽ .tor T R probe second derivatives of the electronic

wave function with respect to the nuclear coordi-
nates. These are small compared to the d and arei j

w xusually neglected 57–59 .
In surface-hopping methods classical trajectories

evolve under the forces determined from a single
quantum state k,

ˆF sy c = H R c . 13Ž . Ž .¦ ;SH k R 0 k

At various points along the trajectory, generally co-
inciding with regions of strong interstate coupling,
hops may take place to different states to reflect the
cumulative occupation probabilities determined by

< Ž . < 2the c t . The force on a surface-hopping trajec-i

tory responds to changes in the total quantum wave
function only at the points where hops can occur.
Self-consistency between the quantum wave function
and the classical degrees of freedom is thus not
realized on an individual trajectory, but is realized
for the ensemble of trajectories, which maintains the
correct population of quantum states.

Tully has introduced a general and easily applied
SH method called molecular dynamics with quantum

Ž . w xtransitions MDQT 60,61 . Coker and co-workers
have discussed this method extensively and made
numerous applications to multidimensional systems

w xof physical and experimental interest 21,59,62–64 .
Ž Ž ..In MDQT, the quantum amplitudes Eq. 10 are

integrated throughout the course of a trajectory. At
every time step a decision is made whether to switch
to a new state using a ‘‘fewest switches’’ algorithm
designed to minimize the total number of hops
w x59,60 . This algorithm correctly reproduces the

< Ž . < 2probabilities c t of occupying each quantum statei

at any time along a given trajectory. Two major
advantages of MDQT over previous SH methods
w x57,58 are that regions of strong coupling do not
have to be identified in advance and regions of
extended coupling may be treated. Both of these
properties make MDQT easy to implement in any
system, regardless of size, as long as the necessary
potential surfaces and couplings can be computed at
arbitrary configurations.

A source of concern in obtaining accurate results
from MDQT trajectories is the length of time the
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quantum mixed state used to determine surface hop-
ping is allowed to propagate before being resolved.
In the original presentation of the method quantum
phase coherence was maintained for all time. This
gives rise to two problems: spurious interference
effects may arise from multiple passages through
regions of strong nonadiabatic coupling, and the
nonadiabatic transition rates themselves may be in-
correct. Some method of determining an appropriate
‘‘decoherence time’’ and resolving the mixed quan-
tum state on this time scale must therefore be de-
vised. Building on work by Nitzan and co-workers
w x w x65,66 , Rossky and co-workers 67–69 have devel-
oped a practical scheme for estimating decoherence
times in multidimensional systems. The key quantity

Ž .in their analysis is the overlap J t between the
nuclear wave functions propagated for time t on the
two different potential surfaces,

i H tr " yi H tr "2 1² :J t s x R 0 e e x R 0 .Ž . Ž . Ž .Ž . Ž .
14Ž .

Decay of the nuclear overlap places an upper bound
on the time scale for the loss of quantum coherence
in nonadiabatic transitions, and has been used to

w xdefine the characteristic decoherence time 67–69 .
The loss of quantum coherence signaled by the
decay of the nuclear overlap can be quantified by

w xmaking a Frozen Gaussian approximation 70 to
w xevaluate the nuclear wave functions 67–69 . By

Ž .averaging J t over an ensemble of photodissocia-
tion trajectories, we have found that for IyAr clus-2 n

ters the decoherence time is on the order of several
hundred fs.

The algorithm used in this work to compute sur-
face-hopping closely follows the MDQT prescription

w xof Tully 60,61 , modified to account for the quan-
tum decoherence. At the beginning of a trajectory the
quantum amplitudes are initialized with the ampli-
tude of the initially occupied state set to one and all
others set to zero. At each time step, the classical
equations of motion are propagated forward one
classical time step, D. The equations for quantum

Ž Ž ..amplitudes Eq. 10 are then integrated on this
interval using an adaptive time step that is much
smaller than D to ensure convergence of the ampli-
tudes. Values of the adiabatic energies and the nona-

diabatic couplings are obtained along the interval
through linear interpolation using the values from the
classical trajectory computed at the endpoints of the
interval. The classical time step must be small enough
that the adiabatic energies and couplings vary
smoothly on the interval, so that interpolation of
their values is accurate. The nonadiabatic couplings
may be computed exactly at the interval endpoints,
but we have chosen to follow the prescription of

˙w x wTully and Hammes-Schiffer 61 and compute RP
xŽ .d tqDr2 by a symmetrized finite difference.i j

The values at tyDr2 are saved and linear interpola-
tion and extrapolation are used to compute values
intermediate between t and tqD. The overlap of the
quantum eigenvectors at successive classical steps is

Ž .required to meet a threshold usually 0.9 in order to
ensure that narrow regions of strong coupling are not
missed by the integration. The classical stepsize is
adaptively reduced when the overlap falls below
threshold.

Our implementation of surface hopping collapses
the quantum amplitudes onto a single state periodi-
cally during the course of a trajectory to mitigate the
effects of spurious quantum coherence. The mixed
state is resolved into its eigenstates by setting c s1k

for the occupied state and all other amplitudes to
zero. It is important that this not be done when the
trajectory is in a region of strong nonadiabatic cou-
pling because this can cause serious errors in the
hopping probabilities, particularly in regions with
weakly avoided crossings. In this work amplitude
resetting was attempted at 100 fs intervals along
each trajectory, and amplitudes were reset only if the
magnitude of each nonadiabatic coupling element
˙ Ž .R t Pd arising from the currently occupied statei j

fell below a threshold of 10y5 atomic units. This
procedure does not damp coherence that arises in
extended coupling regions, but prevents coherence
from arising on separate passages through strong
coupling regions.

Tully’s ‘‘fewest switches’’ algorithm determines
surface hopping from the probability flux rather than
the amplitudes themselves. The change in probability

w xper unit time of occupying state k is given by 60

)r sy 2Re c c RPd ' b , 15Ž .˙ Ž .Ý Ýk k j k k j k j
j j/k
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so the probability flux out of state k into state j per
unit time is yb . Over a finite time interval D t, thek j

probability of making a hop from state k to state j is

tqD t X Xy b t dtŽ .H k j
tg s , 16Ž .k j

r tŽ .k k

Ž .where r t is the probability of occupying state kk k

at time t. These transition probabilities can be inte-
grated along with the quantum amplitudes at little
extra expense. At the end of each classical time step,
the transition probabilities are used to determine
whether hops take place based on comparison with a
random number 0-z-1. A hop can take place to
state j only if g )0 and z-g . The number ofk j k j

hops between states is minimized by this first crite-
rion that g )0, which means that hops take placek j

only when there is a net flux of probability into the
target state. If multiple g are greater than zero,k j

hops are determined by considering the target states
in succession, subtracting g from z for each statek j

to which no hop occurs. If no hop is made to any
state, integration of the trajectory continues on the
current state k.

When the algorithm determines that a hop should
occur, the velocities must be adjusted to conserve
energy in the new state. The MDQT procedure calls
for scaling the velocities by applying an instanta-

w xneous force in the direction Re d . Scaling thek j

velocities subject to a set of arbitrary constraints on
the velocities in the system requires determining a
single scale factor g , where the velocities for each
atom i are changed according to

g
new old Ž i.v g sv q Re d . 17Ž . Ž .i i k jmi

newŽ .The molecular constraints are applied to v g

using the methods described in Section 4.1 above.
When the target state is higher in energy than the
current state, the kinetic energy may not be large
enough to compensate for the change in potential
energy, i.e. the transition may be classically forbid-
den. In this case the hop is rejected and the current
state is not changed. The MDQT procedure also
specifies that the component of the velocity in the
direction of the nonadiabatic coupling be reversed
w x y61 . In practice, tests on photodissociation in I Ar2 n

clusters seem to indicate that performing the reversal
w xhas little effect on the branching ratios 23 but does

have the undesirable effect of introducing instanta-
neous dephasing of the solute vibrations. This effect

w xhas also been noted by Muller and Stock 71 , who¨
have suggested dropping this procedure from the
MDQT algorithm, and this has been done in the
simulations described here.

4.3. Forces and nonadiabatic couplings

Computing MD trajectories and surface-hopping
requires determination of forces on the adiabatic
potentials and nonadiabatic couplings between the
potential surfaces. Since this is generally the most
time-consuming part of any simulation it requires
careful consideration. In the following subsections
we discuss our general procedure for evaluating these
forces and nonadiabatic couplings, present a pre-
scription for matching the phases of the complex

Žeigenvectors required for the current problem be-
cause of the Kramers degeneracy resulting from

.unpaired electron spins , and finally give explicit
formulas for evaluating the derivatives of the model
Hamiltonian.

4.3.1. General formulas
If we assume that the adiabatic states, c arek

defined in terms of an orthonormal set of functions,
f , such thatn

< : < :c s G f , 18Ž .Ýk nk n
n

w xthen the Hellmann-Feynman 72 theorem gives the
forces on state k

ˆ ˆ² < < : ² < < :F sy= c H c sy c = H c . 19Ž .k R k k k R k

The important point here is that calculating the forces
requires only derivatives of the Hamiltonian and not
the derivatives of the eigenfunctions, which are more
complicated to compute. The nonadiabatic couplings
are given by an off-diagonal version of this relation
w x58,73,74

² < < :c = H cj R k
) ² < :X Xd s q G G f = f ,Ýjk nk n j n R n

XE yEk j nn

20Ž .
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which involves derivatives of the basis functions
with respect to the classical coordinates,

² < :X XD s f = f , 21Ž .nn n R n

but not of the coefficients that define the adiabatic
states. This is useful because obtaining the deriva-
tives of the eigenvector coefficients is a much more
involved process than obtaining the eigenvectors
themselves, which is done using canned matrix diag-
onalization routines. For the low-lying electronic
states of Iy, the D X vanish by symmetry. For other2 nn

molecules, such as ICly, this is not the case and the
basis function derivatives are evaluated using finite

w xdifference approximations 27 . The full nonadiabatic
coupling vector is required by the MDQT method
only when hops occur; at other times the couplings

Žrequired to integrate the quantum amplitudes Eq.
Ž ..10 can be computed by a simple finite difference

w xscheme 27,61 .

4.3.2. Phase matching of eigenÕectors
In the open-shelled molecules studied in this work

the presence of unpaired electrons gives rise to state
degeneracies that are not lifted by any electrostatic
interactions with the solvent. Numerical determina-
tion of these degenerate eigenstates results in an
arbitrary phase being associated with each of the
degenerate eigenvectors. If this phase is not pre-
served in calculations at neighboring geometries, the
nonadiabatic coupling calculated from these states
will oscillate wildly, making numerical integration of
the quantum amplitudes impossible. Several methods
of handling this problem have been suggested
w x16,75–78 ; we have adopted the procedure of Maslen

w xet al. 16 . The eigenvectors determined by this
method of phase matching have been tested numeri-
cally by comparing values of the nonadiabatic cou-

Ž .plings computed analytically using Eq. 20 with
couplings computed using finite differences; the good
agreement shows that the phase matching scheme
adopted here is adequate for computing nonadiabatic
dynamics on these potential surfaces.

Our phase matching prescription requires that the
nonadiabatic couplings vanish for each member of
the degenerate manifold

² < < :c ErE t c s0, ; j,kgK , 22Ž .j k

where K denotes the indices of the manifold mem-
bers. This requirement can be written in matrix
notation as

† ˙ † ˙G t G t qG t RPD G t s0, 23Ž . Ž . Ž . Ž . Ž .Ž .K K K K

Ž .where G t is a matrix whose columns contains theK

manifold eigenvectors. Using a finite difference ap-
proximation to the time derivative this equation can
be manipulated to give

w xG tqD s 1yd RPD G t , 24Ž . Ž . Ž .K K

Ž . Ž . X Ž .where d RsR tqD yR t . Now if G tqDK

contains the eigenvectors obtained from numerical
diagonalization of the Hamiltonian, the phase-
matched eigenvectors at the new time are related to
these unmatched eigenvectors by the unitary trans-
formation

GX tqD sG tqD U. 25Ž . Ž . Ž .K K

Putting this into the phase matching requirement
Ž .given by Eq. 24 gives the desired transformation

matrix

† w x XUsG t 1qd RPD G tqD . 26Ž . Ž . Ž .K K

U is only unitary in the limit of an infinitesimal time
step, so to maintain the orthonormality of the phase
matched eigenvectors, U is transformed using sym-
metric orthogonalization.

4.3.3. DeriÕatiÕes of the model Hamiltonian
In Section 3 we presented an effective Hamilto-

nian for clusters including the electronic states of the
solute and the interactions among solute and solvent
molecules. We now discuss the computation of the
analytic derivatives of this Hamiltonian that are
needed to determine the forces and nonadiabatic
couplings. The discussion includes only the deriva-
tives of the electrostatic terms, since derivatives of
the remaining pairwise terms are standard quantities
in MD simulations and have been discussed exten-

w xsively elsewhere 51,79 . The derivatives of the elec-
trostatic terms are expressed in Stone’s notation
w x22,35 as forces and torques acting on the individual
multipole sites. The procedures for converting these
forces and torques into forces on the primary atoms,
as required by our method of computing the molecu-
lar dynamics, are described following discussion of
the basic derivatives.
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The effective Hamiltonian for the electrostatic and
polarization interactions of the solute and solvent can
be expanded into five terms,

1 1lrˆ ˆh s QPTPQqqPTPQy QPTPxPTPQ2 2

1ˆ ˆ ˆyqPTPxPTPQy qPTPxPTPq , 27Ž .2

where the first two terms contain the interactions
among the permanent multipoles and the last three
terms contain the interactions of the permanent mul-
tipoles with the induced moments. It is convenient to
discuss the derivatives arising from each of these
interactions separately because of the large number
of terms that arise. The derivatives are computed in
terms of the generalized coordinate X , which repre-i

sents the Cartesian and angular coordinates of each
of the multipole sites in the system.

Ž .The forces due to the first term in Eq. 27 , the
interactions of the permanent solvent multipoles, are
given by

E E T
1 1Ž1.F sy QPTPQ sy QP PQ ,Ž .i 2 2E X E Xi i

28Ž .

where we have assumed for simplicity that the multi-
poles contained in Q do not depend on any of the
coordinates X . Because this term does not dependi

on the electronic state of the solute, it contributes the
same to all of the adiabatic forces and does not
contribute to the nonadiabatic couplings. Computa-
tion of the forces from this equation and the similar
but more complicated expressions presented below
may be performed very efficiently. The tensor T
contains only pairwise interactions so that there are
at most 12 nonzero derivatives of each element T ,ab

because each multipole site is defined by three posi-
tion and three orientation coordinates. In fact, since
F syF , there are at most 9 unique derivatives. Asa b

we will see below, computation of these derivatives
involves simple terms already required for the evalu-
ation of the energy, and calculation of the adiabatic
energies and forces is only about three times as
expensive as calculation of the energies alone.

Terms involving the solute multipole operators q̂
depend on the solute electronic state. The matrix
elements of the derivatives of the second term in Eq.

Ž .27 , the interactions of the solute multipole opera-
tors with the permanent solvent multipoles, are given
by

E
Ž2. ˆd s f qPTPQ fŽ .jk j ki ¦ ;E Xi

E T E R E qc jk
sq P PQq PTPQ , 29Ž .jk ž /E X E X E Ri i c

Ž Ž2..where d refers to the matrix elements of thejk i

Hamiltonian derivatives rather than the nonadiabatic
couplings, which are computed from these deriva-

Ž .tives using Eq. 20 . q represents the matrix ele-jk
² < < :ments of the multipole operators, f q f . Deriva-ˆj k

tives of these operators with respect to the internal
solute coordinate R are nonzero, and are deter-c

mined, as are the multipole operators themselves, by
cubic spline interpolation. It is in fact rare during the
course of a trajectory that all of the derivative matrix
elements are evaluated in this way—only when the
full nonadiabatic coupling vector is required to ad-
just the classical velocities following a hop. The
remainder of the time only the force on a given
adiabatic state c is required:

ˆ² :E T E R E q ccŽ2. ˆ² :F s q P PQq PTPQ .Ž . cc i ž /E X E X E Ri i c

30Ž .
Because only the expectation value of q is needed,ˆ
computation of the forces arising from the quantum
wave function is only marginally more expensive
than calculation of the purely classical forces.

The terms involving the induced moments can be
evaluated by making use of the relation

y1y1w xE x E Tqa E Ty1y1w xs sy Tqa P
E X E X E Xi i i

E Ty1y1w xP Tqa syxP Px . 31Ž .
E Xi

Ž .The forces due to the third term in Eq. 27 , the
interactions of the permanent solvent multipoles with
the induced multipoles, are given by

E
1Ž3.F s QPTPxPTPQŽ .i 2 E Xi

E T E T
1syQP PD y D P PD , 32Ž .Q Q Q2E X E Xi i



( )J. Faeder et al.rChemical Physics 239 1998 525–547540

which has been simplified by identifying the induced
moments, D 'yxPTPQ. The matrix elements ofQ

Ž .the derivatives of the fourth term in Eq. 27 , the
cross term between the solute and solvent multipoles
interacting with the induced moments are

E
Ž4. ˆd s f yqPTPxPTPQ fŽ .Ž .jk j ki ¦ ;E Xi

E R E qc jk
s PTPD Qž /E X E Ri c

E T E T
qq P PD qD P PDjk Q jk QE X E Xi i

E T
qD P PQ , 33Ž .jk E Xi

where D 'yxPTPq are the induced momentsjk jk

due to the solute multipole matrix elements. It is also
useful to express the forces arising from this term on
the adiabatic state c ,

ˆ² :E R E q ccŽ4.F sy PTPDŽ .c Qi ž /E X E Ri c

E T E T
ˆ² :y q P PD yD P PDc Q c QE X E Xi i

E T
yD P PQ , 34Ž .c E Xi

² :where D 'yxPTP q . The fifth and final termcc

Ž .in Eq. 27 , which arises from the interaction of the
solute multipoles with the induced moments, is a two
electron operator and is thus somewhat more compli-
cated to evaluate. This operator is determined in
terms of one electron operators by inserting the

ˆ < : ² <identity operator, 1sÝ f f , which is approxi-n n n

mated by restricting the sum to the basis set used in
the calculation of the adiabatic states. The derivative
matrix elements are then given by

E
1Ž5. ˆ ˆd s f y qPTPxPTPq fŽ . Ž .jk j k2i ¦ ;E Xi

E R E qc jn1s PTPDÝ nk2 ½ žE X E Ri cn

E qnk
q PTPD jn /E Rc

E T E T
qq P PD qq P PDjn nk nk jnE X E Xi i

E T
qD P PD . 35Ž .jn nk 5E Xi

The adiabatic forces arising from this term simplify
to

E R E qc c nŽ5.F sy Re PTPDŽ . Ýc nci ½ ž /E X E Ri cn

qRe q PTPDŽ .c n nc

E T
1q D P PD , 36Ž .c n nc2 5E Xi

² < < :where q ' c q f and D 'yxPTPq .ˆc n n nc nc

This completes the formulas required to compute the
derivatives and forces for the effective Hamiltonian
model. We have tested all of the forces and nonadia-
batic couplings computed analytically using the above
formulas against finite difference approximations to
the same quantities to ensure that the expressions
have been coded correctly.

To conclude, we briefly discuss evaluation of the
derivatives of the interaction tensor matrix elements
required to compute the forces. The tensor matrix

w xelements derived by Stone and co-workers 35 are
expressed in terms of 16 basic variables involving
the multipole site positions and the axes used to
define the multipoles. The interaction between two
multipole sites a and b on molecules A and B is
illustrated in Fig. 8. The fundamental quantities that

Fig. 8. Vectors describing the interaction of two multipole sites on
different molecules. Vectors denoted by a capital letter are fixed
in the space frame, while lowercase vectors are body-fixed.
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occur in the tensor formulas are R , the separationab

vector between sites a and b, and the multipole
axes, w sx ,y ,z and w sx ,y ,z . The axesa a a a b b b b

defining the multipoles on each site may in general
differ from the molecular axes, but they are taken to
be the same in this work. The 16 variables that occur
in the interaction tensor formulas are R , w PR ,ab a ab

w PR , and w Pw . So, for example, the tensorb ab a b

element between the z component of the dipole
moment on site a and a charge on site b is given by

y z PRŽ .a ababT s . 37Ž .10 ,00 3Rab

In Stone’s formulation, the derivatives of these ten-
sor elements are converted to forces and torques
acting on the molecular center-of-mass by making
use of the chain rule and the derivatives of the 16
basic variables with respect the the center of mass

w xposition and orientation 35,80 . This assumes that
the molecules are rigid, and the approach must be
modified to apply to the nonrigid molecules, particu-
larly the solute, considered by our method. We do
this by converting the derivatives of the tensor ele-
ments with respect to the 16 fundamental variables
to forces and torques acting on the multipole sites.
These forces and torques are then converted to forces
on the primary atoms following an additional appli-
cation of the chain rule to determine the derivatives
of the multipole positions and orientations with re-
spect to the primary atom positions. The details of

w xthis analysis are given in Ref. 27 .

5. Photodissociation, recombination and elec-
I( )tronic relaxation in I CO clusters2 2 n

We have applied the methods described in preced-
y w xing sections to I clustered with Ar 23,25 , CO2 2

w x w x y24 and OCS 10 and to ICl clustered with CO2
w x yŽ .27,81 . We choose I CO to illustrate the method2 2 n

as this system is the most extensively studied in the
experiments. While some of our results have been

w xdescribed in an earlier communication 24 , we focus
here on the time scales for electronic transitions, a

w xsubject only briefly discussed in Ref. 24 .
Two different ensembles, designed to emphasize

different aspects of the dynamics, have been used in

the simulations described here. The first ensemble
includes 41 trajectories for each cluster size, inte-
grated for up to 200 ps. The initial conditions were
obtained by sampling a single 400 ps trajectory with
an average temperature of 80 K. The products are
determined by integrating the trajectories until the
nuclear configuration meets either of two criteria: the

˚ yI–I distance exceeds 20 A, or I undergoes more2

than 100 oscillations in a particular potential well.
The second type of ensemble consists of 200 trajec-
tories, each of which is integrated for 10 ps. This
ensemble was used to explore the short-time dynam-
ics of electronic relaxation in clusters containing 9,
12, and 16 CO molecules.2

The comparison of simulated and experimental
Ž .photoproduct distributions in Fig. 9 a demonstrates

the accuracy of the model. The product distributions
agree to within the statistical errors in the simulation

Ž .at all cluster sizes. Fig. 9 b introduces a collective
‘‘solvent coordinate’’, DF , that measures the asym-
metry of the electrostatic environment around the
solute. DF is defined as the change in energy when
a charge of ye is moved from I to I whileA B

holding the solute and solvent nuclear coordinates
fixed. The figure shows the equilibrium ensemble
average of DF for clusters in their electronic ground
state. The CO -CO interactions are strong, so the2 2

solvent molecules cluster together, forming a cage
around one end of the solute at ns9 and closing a

yŽ .complete solvent shell at ns16. Thus, in I CO2 2 9

photodissociation begins from a highly asymmetric
yŽ .solvent configuration, whereas in I CO the sol-2 2 16

vent is much more symmetric.
Fig. 10 shows the ensemble-averaged populations

in each electronic state as a function of time as
determined from the 200 trajectoryr10 ps ensem-
bles. The two repulsive curves are very close in
energy and are strongly coupled to each other, so we
have added their populations together and referred to
the sum as the AX population. Also, we have re-
moved from the average those trajectories that disso-
ciate within 10 ps. Trajectories reach the X state by
two pathways: roughly 25% hop directly from AX to
X, while the remainder hop first to the A state. No
trajectories dissociate directly on the AX state. The
figure shows that electronic relaxation is character-
ized by more than one time scale; for example, in the
case of ns16, trajectories leave the AX state in 1–2
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Ž . y Ž .Fig. 9. a Branching ratio for the products of I CO photodis-2 2 n

sociation at 790 nm. The filled circles are the experimental data
and the squares show the simulation results. The 1s error bar
shown for ns10 is based on the statistical sampling and is

Ž .representative of the error bars at other cluster sizes. b Ensemble
average of the magnitude of the solvent coordinate as a function
of cluster size. Typical structures for ns5, 10, and 16 are shown.

ps and the X state population rises to 50% by about
3 ps, after which there is a very slow relaxation from
A to X. Eventually all of the A state molecules

w xeither relax or dissociate. As noted in Ref. 24 , the
Iy binding energy on the A state is only 100 meV,2

about half the binding energy of a single CO2

molecule with Iy. The solvent thus tends to push
apart the Iy bond and localize the excess charge.2

The resulting ‘‘solvent-separated pair’’, in which an
Iy ion is weakly bound to several CO molecules2

Ž .and one I atom, is shown in Fig. 11 b .
As the geometry of the hot cluster fluctuates, it

passes through regions of strong coupling to the X
state, where recombination can occur; alternatively,

the solute may completely dissociate via evaporation
of the neutral iodine. The decay of these meta-stable
clusters accounts for the slow transfer of population
from the A to the X state. We define an overall
recombination time by

`

ts f t d t , 38Ž . Ž .H
0

Ž .where f t is the fraction of trajectories that have not
recombined at time t, including only those trajecto-
ries which ultimately recombine. From our 41 trajec-
toryr200 ps ensembles we calculate t to be 12.8,
10.1, and 17.1 ps for ns9, 12, and 16, respectively.
This value is dominated by the slow A to X relax-
ation and strongly influenced by the few trajectories
that have very long recombination times, upwards of
50 ps in some cases; for most purposes it is more
informative to inspect Fig. 10 directly.

Perhaps the most surprising feature of this system
is the remarkably high caging efficiency: simulation

Fig. 10. Ensemble average of the population of each solute
y Ž . Xelectronic state versus time for I CO . The A state curve is2 2 n

marked with squares, dotted and solid lines correspond to the A
and X states, respectively.
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y Ž . Ž .Fig. 11. Typical configurations for I CO . a At equilibrium2 2 16
Ž .on the X state. b A solvent-separated pair on the A state.

and experiment both show significant recombination
for clusters having as few as 5 CO molecules, less2

than one third of a solvent shell. Related to this is
our observation that dissociation never takes place
on the initially excited AX state. We explain these
results in terms of the polarization of the charge
distribution on the solute by the solvent. In the
electronic ground state, and in excited states that are
primarily bonding in character, an asymmetric sol-
vent environment causes the solute charge to flow
towards the more favorably solvated I atom. In
antibonding excited states, however, the charge
moves in the opposite direction. This counterintuitive
behavior, which we have called ‘‘anomalous charge

w xswitching’’ 16,17 , may be understood in terms of a
simple diatomic LCAO-MO picture. In the isolated
molecule the atomic orbitals combine into bonding
and antibonding molecular orbitals, both of which
are delocalized. An asymmetric solvent environment
polarizes the solute charge distribution to an extent
that depends on the strength of the solute-solvent
interaction relative to the bonding interaction. The
bonding molecular orbital becomes distorted so that
most of the wave function amplitude resides on the
more solvated atom, and since the ground and ex-
cited states must remain orthogonal, the antibonding
MO must polarize in the opposite direction. Thus
charge flows towards the solvent in the ground state,

and away from the solvent in the excited state. In
other words, in an antibonding state the component
of the molecular polarizability tensor parallel to the
internuclear axis is negative.

In real molecules, the magnitude and direction of
charge flow depends on the details of the solute
electronic structure, which in the halogens is affected
by strong spin-orbit coupling. From our electronic
structure calculations we find that the X and A
states show normal charge flow, while the AX state
shows anomalous charge flow at most internuclear

Ždistances. In the immediate vicinity of the Franck-
Condon region, charge flow on the AX state is nor-
mal, but trajectories leave this region too quickly for

.this to influence their dynamics. Dissociation in the
AX state thus requires ejection of an ion from the
cluster. The nascent ion is held back by the electro-
static and polarization interactions with the neutral
cluster that it is trying to escape, and in CO clusters2

these forces are strong enough to suppress the direct
dissociation pathway even in very small clusters.
This contrasts with the more weakly bound Ar clus-
ters, in which direct dissociation on the AX state is
observed in the simulations, providing a likely expla-
nation for the experimentally observed bimodal mass

w xdistribution in the dissociation products 23 .
The contrast between anomalous charge flow on

the AX state and normal charge flow on the A and X
states also plays a key role in the electronic relax-
ation at short times. Fig. 12 shows the ensemble

< <average of DF during the first 2 ps after excitation.

Fig. 12. Ensemble average of the magnitude of the solvent
coordinate versus time for ns9, 12, and 16. The rise at 500 fs is
evidence of solvent rearrangement following electronic relaxation.
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Ž .As the equilibrium geometries in Fig. 9 b illustrate,
yŽ .I CO starts out from a much more asymmetric2 2 9

yŽ .solvent geometry than I CO . The initial rise in2 2 16

the solvent asymmetry at about 200 fs arises from
solute, not solvent, motion: the iodine atom that was
initially less solvated moves away from the cluster of
solvent molecules, so that DF increases. After this,
however, the escaping charge draws the solvent to-
wards a more symmetric configuration, as illustrated
by the sample trajectory shown in Fig. 13. This is
characteristic of anomalous-state solvent dynamics
—because the charge and the solvent move in oppo-
sition to each other, the energy minimum occurs at
DFs0. Nonadiabatic coupling to the A and X

˚states becomes important at bond lengths of 5–7 A
and small values of DF , as shown by the central
dark circle in Fig. 13. Because the nonadiabatic
coupling is confined to symmetric solvent geome-
tries, trajectories beginning from initially symmetric
solvent configurations undergo nonadiabatic transi-
tions to the A and X states at earlier times than
those starting from asymmetric configurations. As
shown in Fig. 10, the decay rate of the AX state
population following photoexcitation increases as the
cluster size is increased from 9 to 16 because the
initial configurations become more symmetric.

Fig. 13. Schematic diagram of recombination following photodis-
sociation from an asymmetric cluster configuration. Dashed line:
initial dissociation on the AX state; dotted line: temporary trapping
on the A state; sold line: recombination on the X state. Circles
mark the location of surface hopping events.

The transition from anomalous charge switching
on the AX state to normal charge switching on the A
or X states leads to a rapid increase in solvent
asymmetry following the initial hop. At these longer
bond lengths, the charge tends to localize on a single
iodine atom, and because the solvent and the charge
flow now act in concert, the solvent rearranges to
stabilize the atomic ion, forming the solvent-sep-
arated pair mentioned earlier. The ion-solvent inter-
actions are substantially larger than the A state
potential well, so even though Iy separations charac-2

teristic of bound A-state Iy in the gas phase are2

observed, trajectories trapped in the A state always
undergo transitions to the X state on a picosecond

Ž ytime scale. In contrast, metastable I Ar clusters in2 n

the A state have experimental lifetimes exceeding
w x .several microseconds 7 . Transitions from the A to

X state require reorientation of the p orbital hole on
the iodine atom and generally occur at somewhat

˚longer bond lengths of 7–9 A, where the solute
electronic coupling is weak. The time scale on which
these transitions occur appears to be governed by
essentially diffusive motion along the Iy bond coor-2

dinate, as shown in Fig. 13. Hops to the X state may
be followed by diffusive motion at long bond lengths,
and hops back to the A state are possible. However
once the solute bond length is significantly less than

˚6 A on the X state, the strong bonding interactions
in the ground state lead to rapid recombination and
vibrational relaxation of Iy, as Fig. 13 illustrates.2

A major goal of these simulations has been to
provide an interpretation of the picosecond pump-
probe absorption experiments of Lineberger and co-

w xworkers 5,8 . It is difficult to obtain a detailed
picture of the photodissociation dynamics from these
experiments alone because the absorption spectrum
of Iy away from the equilibrium geometry is not2

known, and because the solvent may strongly affect
the spectrum at these geometries. Simulation of the
transient absorption spectrum from the trajectories,
currently underway, will be required to make a direct
comparison between the simulations and the experi-
ments; however, it is possible to discuss the general
features evident in both. The experiments suggest a
time scale of about 20 ps for the overall process of

yŽ .electronic and vibrational relaxation in I CO ,2 2 9
w xdecreasing to about 10 ps for ns16 5,8 . The time

scales generally agree with the time scales for elec-
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tronic relaxation observed in the simulations, 10–20
ps, although the total relaxation time seems to be
longer in the simulations at ns16 than in ns9.
Both our simulations and previous theoretical inves-
tigations of Iy vibrational relaxation in the ground2

w xelectronic state 17,20 have found that the time scale
Ž .for vibrational relaxation is very fast 1–2 ps in

comparison to the electronic relaxation times found
here. Furthermore, our simulations indicate that the
rate of vibrational relaxation—even near the bottom
of the potential well—does not vary substantially
with cluster size in CO clusters. It is thus likely, as2

w xPapanikolas et al. 17 have conjectured, that the
time scale for electronic relaxation is the major
contributor to the overall probe absorption recovery
signal.

A major finding of the Lineberger experiments
was the appearance of a ‘‘bump’’ centered at around

w x2 ps in the absorption recovery for nG14 5 . This
bump, which has also been observed by Barbara and
co-workers in both polar and nonpolar solutions
w x12–15 , has been attributed to absorption from the
inner turning point on A state following coherent
recoil off the solvent cage. In the present simula-
tions, motion along the Iy bond coordinate follow-2

ing electronic relaxation to the A state is diffusive,
and a coherent return to short bond lengths in the
excited state seems unlikely. As we have seen, the
localization of charge on a single atom and the
subsequent rearrangement of the solvent tends to
keep the solute bond length large at short times. It is
possible that the absorption bump arises from recoil
in a small fraction of the ensemble that then absorbs
strongly, but the simulations suggest other possibili-
ties that should be investigated. In particular, more
than a quarter of the trajectories hop directly from
the AX state to the X state and recombine within 1–3
ps. While the experiments of Barbara and co-workers
in solution appear to rule out the possibility that the
transient feature arises from absorption at the bottom
of the ground state well, the simulations show that
strong absorption is possible at bond lengths of about

˚5 A near the top of the ground state well. The
passage of a substantial fraction of the directly re-
combining trajectories through this region could give
rise to an observable transient absorption.

These simulations show that the model is capable
of reproducing the experimental product distribu-

tions, and illustrate how the electronic properties of
the excited states and their interactions with the
solvent drive the dynamics of photodissociation in
clusters. Further investigations, including direct sim-
ulation of the pump-probe spectrum spectrum, are
needed to resolve more detailed questions such as
the origin of the 2-ps feature in the transient absorp-
tion. These investigations are currently in progress
and will be discussed in future publications.

Acknowledgements

We would like to John Papanikolas and Carl
Lineberger for many helpful discussions. This work
was supported by the National Science Foundation
under Grants CHE-9217693 and PHY-9012244, and
by the National Center for Supercomputing Applica-

Ž .tions NCSA under Grant CHE970015N for com-
puting time on the Silicon Graphics Power Chal-
lengeArray at the NCSA, University of Illinois at
Urbana-Champaign.

References

w x1 M. Alexander, N. Levinger, M. Johnson, D. Ray, W.
Ž .Lineberger, J. Chem. Phys. 88 1988 6200.

w x2 D. Ray, N. Levinger, J. Papanikolas, W. Lineberger, J.
Ž .Chem. Phys. 91 1989 6533.

w x3 J. Papanikolas, J. Gord, N. Levinger, D. Ray, V. Vorsa, W.
Ž .Lineberger, J. Phys. Chem. 95 1991 8028.

w x4 J. Papanikolas, V. Vorsa, M. Nadal, P. Campagnola, J. Gord,
Ž .W. Lineberger, J. Chem. Phys. 97 1992 7002.

w x5 J. Papanikolas, V. Vorsa, M. Nadal, P. Campagnola, H.
Ž .Buchenau, W. Lineberger, J. Chem. Phys. 99 1993 8733.

w x6 M.E. Nadal, P.D. Kleiber, W.C. Lineberger, J. Chem. Phys.
Ž .105 1996 504.

w x7 V. Vorsa, P.J. Campagnola, S. Nandi, M. Larsson, W.C.
Ž .Lineberger, J. Chem. Phys. 105 1996 2298.

w x8 V. Vorsa, S. Nandi, P.J. Campagnola, M. Larsson, W.C.
Ž .Lineberger, J. Chem. Phys. 106 1997 1402.

w x9 A. Sanov, S. Nandi, W.C. Lineberger, J. Chem. Phys. 108
Ž .1998 5155.

w x10 S. Nandi, A. Sanov, N. Delaney, J. Faeder, R. Parson, W.C.
Lineberger, J. Phys. Chem. A, in press.

w x11 M.E. Nadal, S. Nandi, D.W. Boo, W.C. Lineberger, in
preparation.

w x12 A.E. Johnson, N.E. Levinger, P.F. Barbara, J. Phys. Chem.
Ž .96 1992 7841.



( )J. Faeder et al.rChemical Physics 239 1998 525–547546

w x13 D.A.V. Kliner, J.C. Alfano, P.F. Barbara, J. Chem. Phys. 98
Ž .1993 5375.

w x14 J. Alfano, Y. Kimura, P. Walhout, P. Barbara, Chem. Phys.
Ž .175 1993 147.

w x15 P.K. Walhout, J.C. Alfano, K.A.M. Thakur, P.F. Barbara, J.
Ž .Phys. Chem. 99 1995 7568.

w x16 P.E. Maslen, J.M. Papanikolas, J. Faeder, R. Parson, S.V.
Ž .ONeil, J. Chem. Phys. 101 1994 5731.

w x17 J.M. Papanikolas, P.E. Maslen, R. Parson, J. Chem. Phys.
Ž .102 1995 2452.

w x18 B.J. Gertner, K. Ando, R. Bianco, J.T. Hynes, Chem. Phys.
Ž .183 1994 309.

w x Ž .19 R. Bianco, J.T. Hynes, J. Chem. Phys. 102 1995 7885.
w x20 I. Benjamin, P.F. Barbara, B.J. Gertner, J.T. Hynes, J. Phys.

Ž .Chem. 99 1995 7557.
w x Ž .21 V.S. Batista, D.F. Coker, J. Chem. Phys. 106 1997 7102.
w x22 A.J. Stone, The Theory of Intermolecular Forces, Oxford,

New York, 1996.
w x23 J. Faeder, N. Delaney, P. Maslen, R. Parson, Chem. Phys.

Ž .Lett. 270 1997 196.
w x24 N. Delaney, J. Faeder, P.E. Maslen, R. Parson, J. Phys.

Ž .Chem. A 101 1997 8147.
w x Ž .25 J. Faeder, R. Parson, J. Chem. Phys. 108 1998 3909.
w x Ž .26 P.E. Maslen, J. Faeder, R. Parson, Mol. Phys. 94 1998 693.
w x27 J. Faeder, PhD thesis, University of Colorado, 1998.
w x28 P.E. Maslen, J. Faeder, R. Parson, Chem. Phys. Lett. 263

Ž .1996 63.
w x29 MOLPRO, a package of ab initio programs by H.-J. Werner,

P.J. Knowles, with contributions from J. Almlof, R.D. Amos,¨
M.J.O. Deegan, S.T. Elbert, C. Hampel, W. Meyer, K.
Peterson, R. Pitzer, A.J. Stone, P.R. Taylor, version 94.3
Ž .1994 .

w x30 M.T. Zanni, T.R. Taylor, B.J. Greenblatt, B. Soep, D.M.
Ž .Neumark, J. Chem. Phys. 107 1997 7613.

w x31 J.G. Dojahn, E.C.M. Chen, W.E. Wentworth, J. Phys. Chem.
Ž .100 1996 9649.

w x32 E.C.M. Chen, J.G. Dojahn, W.E. Wentworth, J. Phys. Chem.
Ž .A 101 1997 3088.

w x Ž .33 A.J. Stone, Chem. Phys. Lett. 83 1981 233.
w x Ž .34 A.J. Stone, M. Alderton, Mol. Phys. 56 1985 1047.
w x Ž .35 S.L. Price, A.J. Stone, M. Alderton, Mol. Phys. 52 1984

987.
w x36 C.S. Murthy, S.F. O’Shea, I.R. McDonald, Mol. Phys. 50

Ž .1983 531.
w x Ž .37 M.J. Weida, D.J. Nesbitt, J. Chem. Phys. 105 1996 10210.
w x Ž .38 A.J. Stone, R.J.A. Tough, Chem. Phys. Lett. 110 1984 123.
w x Ž .39 B.T. Thole, Chem. Phys. 59 1981 341.
w x40 Y. Zhao, C.C. Arnold, D.M. Neumark, J. Chem. Soc. Fara-

Ž .day Trans. 89 1993 1449.
w x41 Y. Zhao, I. Yourshaw, G. Reiser, C.C. Arnold, D.M. Neu-

Ž .mark, J. Chem. Phys. 101 1994 6538.
w x42 I. Yourshaw, Y. Zhao, D.M. Neumark, J. Chem. Phys. 105

Ž .1996 351.
w x43 D.W. Arnold, S.E. Bradforth, E.H. Kim, D.M. Neumark, J.

Ž .Chem. Phys. 102 1995 3493.
w x Ž .44 B.M. Ladanyi, R. Parson, J. Chem. Phys. 107 1997 9326.

w x45 J.-P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, J. Comput.
Ž .Phys. 23 1977 327.

w x Ž .46 W.F. van Gunsteren, H.J.C. Berendsen, Mol. Phys. 34 1977
1311.

w x47 G. Ciccotti, M. Ferrario, J.-P. Ryckaert, Mol. Phys. 47
Ž .1982 1253.

w x Ž .48 G. Ciccotti, J.-P. Ryckaert, Comput. Phys. Rep. 4 1986
345.

w x Ž .49 L. Verlet, Phys. Rev. 159 1967 98.
w x Ž .50 H.C. Andersen, J. Comput. Phys. 52 1982 24.
w x51 M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids,

Clarendon Press, Oxford, 1987.
w x52 R.S. Berry, Structure and dynamics of clusters: An introduc-

Ž .tion, in: G. Scoles Ed. , The Chemical Physics of Atomic
and Molecular Clusters, Proceedings of the International
School of Physics Enrico Fermi, North-Holland, New York,
1990.

w x53 W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing,
Cambridge University Press, New York, 2nd edition, 1992.

w x Ž .54 D. Lu, M. Zhao, D.G. Truhlar, J. Comp. Chem. 12 1991
377.

w x Ž .55 L. Perera, F.G. Amar, J. Chem. Phys. 90 1989 7354.
w x Ž .56 F.G. Amar, L. Perera, Z. Phys. D 20 1991 173.
w x Ž .57 J.C. Tully, R.K. Preston, J. Chem. Phys. 55 1971 562.
w x58 J.C. Tully, Nonadiabatic processes in molecular collisions,

Ž .in: W.H. Miller Ed. , Dynamics of Molecular Collisions,
Part B, Plenum, New York, 1976.

w x59 D.F. Coker, Computer simulation methods for nonadiabatic
dynamics in condensed systems, in: M.P. Allen, D.J. Tildes-

Ž .ley Eds. , Computer Simulation in Chemical Physics,
Kluwer, Dordrecht, 1993, pp. 315–377.

w x Ž .60 J.C. Tully, J. Chem. Phys. 93 1990 1061.
w x Ž .61 S. Hammes-Schiffer, J.C. Tully, J. Chem. Phys. 101 1994

4657.
w x Ž .62 D.F. Coker, L. Xiao, J. Chem. Phys. 102 1995 496.
w x Ž .63 V.S. Batista, D.F. Coker, J. Chem. Phys. 105 1996 4033.
w x Ž .64 V.S. Batista, D.F. Coker, J. Chem. Phys. 106 1997 6923.
w x65 E. Neria, A. Nitzan, R.N. Barnett, U. Landman, Phys. Rev.

Ž .Lett. 67 1991 1011.
w x Ž .66 E. Neria, A. Nitzan, J. Chem. Phys. 99 1993 1109.
w x Ž .67 E.R. Bittner, P.J. Rossky, J. Chem. Phys. 103 1995 8130.
w x68 B.J. Schwartz, E.R. Bittner, O.V. Prezhdo, P.J. Rossky, J.

Ž .Chem. Phys. 104 1996 5942.
w x Ž .69 E. Bittner, P. Rossky, J. Chem. Phys. 107 1997 8611.
w x Ž .70 E.J. Heller, J. Chem. Phys. 75 1981 2923.
w x Ž .71 U. Muller, G. Stock, J. Chem. Phys. 107 1997 6230.¨
w x72 W. Pauli, General Principles of Quantum Mechanics,

Springer-Verlag, New York, 1980, pages 86–87, translated
by P. Achuthan, K. Venkatesan.

w x Ž .73 R.K. Preston, J.C. Tully, J. Chem. Phys. 54 1971 4297.
w x Ž .74 J.C. Tully, J. Chem. Phys. 59 1973 5122.
w x Ž .75 L. Xiao, D. Coker, J. Chem. Phys. 100 1994 8646.
w x Ž .76 T.J. Martinez, Chem. Phys. Lett. 272 1997 139.
w x77 A.I. Krylov, R.B. Gerber, R.D. Coalson, J. Chem. Phys. 105

Ž .1996 4626.



( )J. Faeder et al.rChemical Physics 239 1998 525–547 547

w x Ž .78 A. Krylov, R. Gerber, J. Chem. Phys. 106 1997 6574.
w x79 D.C. Rappaport, The Art of Molecular Dynamics Simulation,

Cambridge University Press, New York, 1995.
w x Ž .80 P.L.A. Popelier, A.J. Stone, Mol. Phys. 82 1994 411.
w x81 J. Faeder, R. Parson, in preparation.

w x82 C.G. Gray, K.E. Gubbins, Theory of Molecular Fluids, vol-
ume 1, Clarendon, Oxford, 1984.

w x83 K.P. Huber, G. Herzberg, Molecular Spectra and Molecular
Structure. IV. Constants of Diatomic Molecules, Van Nos-
trand, New York, 1979.


